ПРИЛОЖЕНИЕ А ФОНД ОЦЕНОЧНЫХ МАТЕРИАЛОВ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ «Теоретическая механика»

1. Перечень оценочных средств для компетенций, формируемых в результате освоения дисциплины

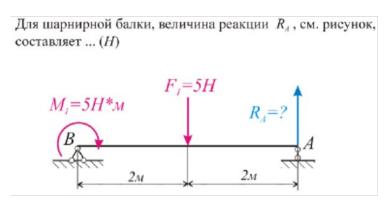
Код контролируемой компетенции	Способ оценивания	Оценочное средство
ОПК-13: Способен применять стандартные	Экзамен	Комплект
методы расчета при проектировании		контролирующих
деталей и узлов технологических машин и		материалов для
оборудования		экзамена

2. Описание показателей и критериев оценивания компетенций, описание шкал оценивания

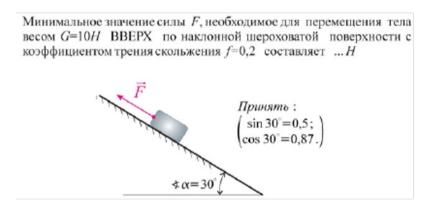
Оцениваемые компетенции представлены в разделе «Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций» рабочей программы дисциплины «Теоретическая механика».

При оценивании сформированности компетенций по дисциплине «Теоретическая механика» используется 100-балльная шкала.

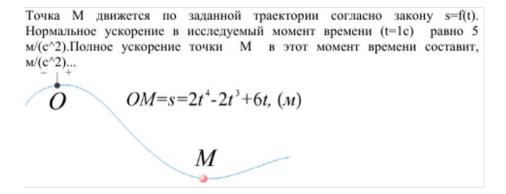
Критерий	Оценка по 100-	Оценка по
	балльной шкале	традиционной шкале
Студент освоил изучаемый материал	75-100	Отлично
(основной и дополнительный), системно		
и грамотно излагает его, осуществляет		
полное и правильное выполнение		
заданий в соответствии с индикаторами		
достижения компетенций, способен		
ответить на дополнительные вопросы.		
Студент освоил изучаемый материал,	50-74	Хорошо
осуществляет выполнение заданий в		
соответствии с индикаторами		
достижения компетенций с		
непринципиальными ошибками.		
Студент демонстрирует освоение только	25-49	<i>Удовлетворительно</i>
основного материала, при выполнении		
заданий в соответствии с индикаторами		
достижения компетенций допускает		
отдельные ошибки, не способен		
систематизировать материал и делать		
выводы.		
Студент не освоил основное содержание	<25	Неудовлетворительно
изучаемого материала, задания в		
соответствии с индикаторами		
достижения компетенций не выполнены		
или выполнены неверно.		


3. Типовые контрольные задания или иные материалы, необходимые для оценки уровня

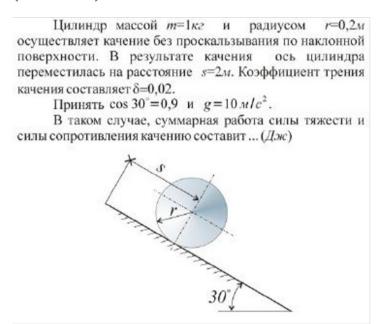
достижения компетенций в соответствии с индикаторами


1.Задания на применение общеинженерных знаний для решения производственных задач

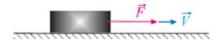
Компетенция	Индикатор достижения компетенции	
ОПК-13 Способен применять стандартные методы	ОПК-13.1 Демонстрирует знание стандартных	
расчета при проектировании деталей и узлов	методов расчета и проектирования деталей и	
технологических машин и оборудования	узлов технологических машин и оборудования	


1 Продемонстрируйте знание стандартных методов расчета и проектирования деталей и узлов технологических машин и оборудования, решив задачу. (ОПК-13.1)

2 Продемонстрируйте знание стандартных методов расчета и проектирования деталей и узлов технологических машин и оборудования, решив задачу. (ОПК-13.1)


З Продемонстрируйте знание стандартных методов расчета и проектирования деталей и узлов технологических машин и оборудования, решив задачу. (ОПК-13.1)

4 Продемонстрируйте знание стандартных методов расчета и проектирования деталей и узлов технологических машин и оборудования, решив задачу. (ОПК-13.1)

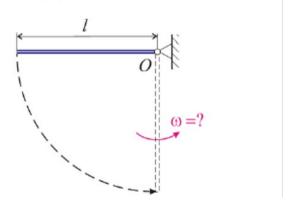


5 Продемонстрируйте знание стандартных методов расчета и проектирования деталей и узлов технологических машин и оборудования, решив задачу. (ОПК-13.1)

6 Продемонстрируйте знание стандартных методов расчета и проектирования деталей и узлов технологических машин и оборудования, решив задачу. (ОПК-13.1)

Брусок массой $m=2\kappa c$, который можно считать материальной точкой, под действием постоянной силы F=5H движется прямолинейно по горизонтальной гладкой поверхности. Определить его перемещение (в M) в момент времени t=2c, если в начальный момент времени его скорость составляла $0.5\,M/c$.

7 Продемонстрируйте знание стандартных методов расчета и проектирования деталей и узлов технологических машин и оборудования, решив задачу. (ОПК-13.1)


Барабан I радиуса r=0,5M, (см. рисунок) вращается согласно закона $\phi=\phi(t)$ и наматывая на себя канат, поднимает груз 2 массой m_2 .

Считая груз материальной точкой, определить количество его движения, $(H\cdot c)$ в момент времени t=1c.

8 Продемонстрируйте знание стандартных методов расчета и проектирования деталей и узлов технологических машин и оборудования, решив задачу. (ОПК-13.1)

Однородный стержень длиной l=2M, начинает вращательное движение относительно оси O из горизонтального положения и состояния покоя под действием силы собственного веса (принять $g=10M/c^2$).

В таком случае, угловая скорость ω в момент прохождения стержнем вертикального положения, см. рис, должна составить ... (c^{-1})

4. Файл и/или БТЗ с полным комплектом оценочных материалов прилагается.